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Abstract Mathematical modeling via the fast Padé transform (FPT) is applied accor-
ding to experimental NMR data encoded from (a) normal, non-infiltrated breast tis-
sue, (b) benign pathology (fibroadenoma) and (c) malignant breast tissue. At a partial
signal length NP = 1500, the FPT provided exact reconstruction of all the input spec-
tral parameters for the time signals corresponding to the normal, benign as well as
to the malignant lesions. The converged parametric results remained stable at longer
signal lengths. The Padé absorption spectra yielded unequivocal resolution of all the
extracted physical metabolites, even of those that were nearly completely overlapping
(phosphocholine and phosphoethanolamine at 3.22 ppm). The capacity of the FPT
to resolve and precisely quantify the physical resonances as encountered in normal
versus benign versus malignant breast is demonstrated. In particular, the FPT unambi-
guously delineated and quantified diagnostically important metabolites such as lactate,
as well as choline, phosphocholine and glycerophosphocholine that are very closely
overlapping and may represent MR-retrievable molecular markers of breast cancer.
This was achieved by the FPT without any fitting or numerical integration of peak
areas. We conclude that these advantages of the FPT could be of definite benefit for
breast cancer diagnostics via NMR and that this line of investigation should continue
with encoded data from benign and malignant breast tissue, in vitro and in vivo. We
anticipate that Padé-optimized MRS will reduce the false positive rates of MR-based
modalities and further improve their sensitivity. Once this is achieved, and given that
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MR entails no ionizing radiation, new possibilities for screening/early detection open
up, especially for risk groups, e.g. Padé-optimized MRS could be used with greater
surveillance frequency among younger women with high breast cancer risk.

Keywords Breast cancer · Magnetic resonance spectroscopy · Time signals ·
Quantification · Fast Padé transform

Abbreviations
Ala Alanine
au Arbitrary units
β-Glc Beta-glucose
CDP Cytosine diphosphate
Cho Choline
FID Free induction decay
FFT Fast Fourier transform
FPT Fast Padé transform
FWHM Full width at half maximum
GPC Glycerophosphocholine
HLSVD Hankel–Lanczos singular value decomposition
Lac Lactate
m-Ino Myoinositol
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
NMR Nuclear magnetic resonance
PA Padé approximant
ppm Parts per million
PC Phosphocholine
PE Phosphoethanolamine
SNR Signal-to-noise ratio
SNS Signal–noise separation
Tau Taurine
TE Echo time
TSP 3-(trimethylsilyl-) 3,3,2,2-tetradeutero-propionic acid

1 Introduction

Early cancer detection is nearly always associated with markedly improved progno-
sis. In order to achieve this survival advantage, resolution enhancement and accurate
quantification of encoded biomedical data are critical [1]. Insufficient accuracy of
the algorithms that are commercially available and built into clinical scanners hin-
ders progress, especially in diagnostic modalities based upon magnetic resonance
spectroscopy (MRS) and spectroscopic imaging (MRSI). Mathematics are of decisive
importance for enhancing the information yield of MRS and MRSI [1]. In this paper,
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we will focus upon the potential advantages of the fast Padé transform (FPT) applied
to MRS as these could specifically impact upon early detection of breast cancer, a
disease which affects an estimated 12% of women during their lifetime and which is
the leading cause of cancer-related mortality among women, with over 400,000 deaths
per year worldwide [2–4].

1.1 Theory: the fast Padé transform

“Proof of principle” investigations [5–15] demonstrate that the fast Padé transform,
the FPT as it is acronymed, is a powerful, stable parametric processor with robust
error analysis, which provides unequivocal quantification of MRS time signals. The
FPT is a non-linear polynomial quotient PL/QK of the exact finite-rank spectrum
(Green function) given by the Maclaurin series with the encoded raw time signal {cn}
as the expansion coefficients. Non-linearity of the FPT yields noise suppression. The
FPT has been shown to be stable when signal length is systematically augmented at
a fixed bandwidth, producing no spikes or other spectral deformations [10,16]. The
FPT is a powerful interpolator and extrapolator [10]. Due to extrapolation, which is
present in the implicit polynomial inversion via Q−1

K in PL/QK , inference is gained
from a non-measurable infinite number of signal points by using only the available
finite set {cn}(0 ≤ n ≤ N − 1, N < ∞). The FPT can use the fixed Fourier mesh
2πk/T (k = 0, . . . , N − 1), but this is not mandatory. In other words, the FPT can
be computed at any frequency ω. Resolution in the FPT is not pre-determined by T ,
which is the total acquisition time. Moreover, due to its parametric estimation and
extrapolation capabilities, the FPT has excellent resolving power.

Quantum mechanics determines that the optimal mathematical model for the fre-
quency spectrum of time signals is prescribed to be the ratio of two polynomials,
i.e. the FPT. Thus, just as in the time domain where quantum mechanics predicts the
form of the time signal as the sum of complex-valued damped exponentials, by virtue
to the time-frequency dual representation, the same physics automatically prescribes
that the frequency spectrum is given by the Padé quotient of two polynomials. This is
the origin of the unprecedented algorithmic success of the FPT, via its demonstrable,
exact reconstructions, as shown in our Refs. [9,10,12,13,17].

The polynomial quotient PK /QK (diagonal) or PK−1/QK (para-diagonal) as a
rational function in harmonic variable z−1 = exp(−iωτ), is known in the literature as
the Padé approximant (PA) [18,19]. In signal processing, the PA is alternatively called
the FPT [18,19] to highlight the possibility of obtaining a shape spectrum from an
FID (free induction decay) via a non-parametric estimation as reminiscent of the fast
Fourier transform (FFT). The latter type of estimation in the FPT is done by simply
evaluating the Padé spectrum PK /QK without ever searching for any of the spectral
parameters that are the complex frequencies {ωk} and amplitudes {dk}. The FPT is the
only parametric estimator which computes the envelope spectrum without the need to
obtain the set {ωk, dk} first. This is in sharp contrast to e.g. Hankel–Lanczos singular
value decomposition (HLSVD) [20] which computes the envelope spectrum by first
estimating the peak parameters {ωk, dk}.
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Most importantly, the FPT can perform parametric reconstructions by rooting the
polynomial QK whose roots {z−1

k } yield {ωk} and this readily leads to {dk} for each
resonance. For example, the para-diagonal FPT treats the exact spectrum, i.e. the men-
tioned finite-rank Green function G N (z−1), via the unique ratio of two polynomials
PK−1(z−1)/QK (z−1) at any frequency ω:

G N (z−1) = 1

N

N−1∑

n=0

cnz−n, (1)

G N (z−1) ≈ PK−1(z−1)

QK (z−1)
=

K∑

k=1

dk

z−1 − z−1
k

, (2)

PK−1(z
−1) =

K−1∑

r=0

pr z−r , QK (z−1) =
K∑

s=0

qs z−s, (3)

where z = eiωτ and zk = eiωkτ . The para-diagonal (L = K − 1) and diagonal
(L = K ) PA are most frequently used from the set of the general PA, PL/QK ,
because they incur minimal error in practice. In the FPT, the sum

∑K
k=1 dk/(z−1 −

z−1
k ) represents the complex-valued total shape spectrum (envelope) which is the

sum of the K corresponding component spectra, dk/(z−1 − z−1
k )(1 ≤ k ≤ K ). Here,

PK−1 and QK are readily extracted from the input data G N by treating the pro-
duct G N QK in the defining relation G N ∗QK = PK−1 as the standard convolution
[5,10,18].

Crucially, unique to the FPT is its unparalleled capability to unequivocally identify
and separate noise from the genuine/physical content of the signal by using the power-
ful concept of Froissart doublets (pole-zero cancellations) [12–14,21]. As in Ref. [13],
a given reconstructed resonance can be identified as true versus spurious by computing
a sequence of the Padé shape spectra {Pm/Qm} (m = 1, 2, 3, . . .) in the frequency
range of interest. Here, the fingerprint of detection of the exact number K of resonances
is the attainment of the stabilization value m = m′ after which a saturation is syste-
matically maintained by observing that Pm′+q/Qm′+q = Pm′/Qm′ (q = 1, 2, 3, . . .).
This critical transition (m = m′) yields the sought K via K = m′, as verified to
work in practice with MRS signals [13]. This is the concept of Froissart doublets,
or equivalently, pole-zero cancellations [12,13,21]. The computation is carried out
by gradually and systematically increasing the degree of the Padé polynomials. As
these degrees change, the reconstructed spectra fluctuate until stabilization occurs.
The value of the polynomial degree at which the predetermined level of accuracy is
achieved represents the sought exact number of resonances K . This constancy of the
reconstructed values can be obtained, e.g. via the cannonical representation of the
Padé polynomial quotients (±: inside/outside the unit circle):

P±
K−1(z

±1)

Q±
K (z±1)

= p±
K−1

q±
K

∏K−1
k=1 (z±1 − z̃±

k )
∏K

k′=1(z
±1 − z±

k′)
, (4)
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where z̃±
k and z±

k are the zeros of polynomials P±
K−1 and Q±

K , respectively. The quotient
form from Eq. 4 leads to cancellation of all the terms in the Padé numerator and
denominator polynomials, when the computation is continued after the stabilized value
of the order in the FPT has been attained, so that:

P±
K−1+m(z±1)

Q±
K+m(z±1)

= P±
K−1(z

±1)

Q±
K (z±1)

(m = 1, 2, 3, . . .). (5)

The Cauchy residue of P±
K−1/Q±

K from Eq. 5 represents the amplitudes d±
k whose

analytical expressions are:

d±
k = p±

K−1

q±
K

∏K−1
k′=1 (z±1

k − z̃±
k′)

∏K
k′=1,k′ �=k(z

±1
k − z±

k′)
. (6)

Therefore, it is obvious from Eq. 7 that whenever z±
k = z̃±

k , the amplitudes d±
k of the

poles from the Froissart doublets are exactly zero:

d±
k = 0 for z±

k = z̃±
k . (7)

The number of spurious resonances is always several times greater than that of
the true metabolites. It is obviously an essential precondition for trustworthy clinical
applications that the genuine information be clearly and unambiguously identified.
Complete separation of noise from the genuine metabolic information, i.e. signal-
noise separation (SNS) has been achieved via the pole-zero cancellations with the
FPT. For free induction decays that were noiseless, the FPT returns all the spectral
parameters (irrespective of their number) within machine accuracy [13,14,17]. For
noise-corrupted FIDs, all the known physical/genuine spectral parameters are retrieved
by the FPT within at least 3–4 decimal places for signal to noise ratios (SNR) of the
level of those typically encountered in time signals encoded via MRS [13,15].

The clear, direct and immediate importance of these findings has been assessed with
respect to clinical oncology. Besides confirming the high resolution and stability of the
FPT in general studies of MR total shape spectra, this superior resolution performance
of the FPT has also been confirmed with respect to data directly derived from malignant
and benign ovarian samples [22,23]. Not only did the FPT markedly enhance resolution
of MR spectra compared to the conventional Fourier analysis, but it also yielded the
unequivocal, exact parametric data needed to reconstruct the metabolite concentrations
which characterize ovarian cancer and distinguish this from non-malignant lesions.
These features of the FPT were deemed to be of critical benefit to ovarian cancer
diagnostics via MRS, in particular for early detection, a goal which has thus far been
elusive, but achievement of which would clearly confer a major survival advantage.
We will now briefly describe the current status of breast cancer screening diagnostics
focusing upon MR-based modalities, with a view to potential improvements that could
be provided by Padé-optimized MRS.
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1.2 The current status of breast cancer screening diagnostics with a focus upon
MR-based modalities

Systematic early detection through screening with mammography followed by appro-
priate diagnosis and management have been clearly demonstrated to reduce mortality
from breast cancer [24–28]. Mammography has been the mainstay of breast cancer
screening. Calcifications due to cancer are depicted thereby, including at the earliest
stage: ductal carcinoma insitu. However, mammography has relatively poor specifi-
city. For dense breasts seen particularly among young women, its sensitivity is also
low (30–48%).

Magnetic resonance-based modalities can aid in early breast cancer detection
without exposing the breast, a radiosensitive tissue, to ionizing radiation. This is parti-
cularly important in view of (a) the heightened radiosensitivity for women with genetic
risk for breast cancer, i.e. with BRCA germline mutations, Li Fraumeni syndrome (p53
tumor suppressor gene mutations), as well as those who are heterozygous for ataxia-
telangiectasia and (b) that screening for women at high risk should begin at a younger
age and with increased frequency [29–31].

Contrast-enhanced magnetic resonance imaging (MRI) is usually very sensitive;
there is consistent evidence that MRI is more sensitive than mammography for detec-
ting breast cancer among women with an increased risk [24,32]. Invasive breast can-
cers that can spread to the lymph nodes and cause distant metastases are frequently
non-calcified and therefore they can be very difficult to detect mammographically,
especially when the breast parenchyma is dense. It is precisely among the younger
women that breast cancer when it does occur, is often biologically more aggressive
[27]. The prognostic profiles of breast cancers detected by MRI appear to be relati-
vely favorable, e.g. a higher percentage of node-negative malignancies compared to
those detected by other screening methods [33]. The American Cancer Society now
recommends MRI for women with an estimated lifetime breast cancer risk at or above
20–25% [24]. Schrading and Kuhl [31] have proposed discontinuing systematic mam-
mographic screening in young women with BRCA1 mutations and instead to use MRI
for screening, in light of the vulnerability to ionizing radiation together with the fact
that in their series, none of the BRCA-1-associated breast cancers were calcified.

False negative findings have, however, been reported for MRI. This occurs mainly
for small tumors, especially if they do not selectively take up contrast. Moreover, MRI
cannot reveal microcalcifications [34] and occasionally invasive ductal and lobular
carcinomas are missed, although in most studies non-detection with MRI is more
common with in situ ductal carcinoma [32,35]. Schrading and Kuhl [31] also note
that high-grade tumors among women with BRCA1 mutations often appear similar
to “fibroadenoma-like” benign tumors. Recent data suggest that MRI may be more
effective for detecting breast cancers among women at high family risk compared to
those with low family risk [36].

However, with respect to breast cancer diagnostics, the main problem with MRI is,
that despite excellent spatial resolution and generally superior sensitivity, its specifi-
city has been lower than mammography in most series published to date [24,33]. This
results in higher call-back and biopsy rates, with approximately 20–40% of these biop-
sies showing cancer (positive predictive value) [24]. Common benign breast lesions
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such as fibroadenomas can sometimes be difficult to distinguish from breast cancer on
MRI [37]. Thus, while women at high risk for breast cancer undergoing intensive sur-
veillance programs appear to be relieved by the greater sensitivity of MRI [38], a large
number of false positive findings may impact unfavorably upon quality of life [39,40].

By providing insight into the metabolic characteristics of malignancy, MRS can
complement the morphological information provided by MRI. In vivo MRS has been
shown to increase the specificity of MRI with respect to the diagnosis of breast cancer
[41–47]. Thus far, data on over 100 malignant and 100 benign breast lesions have been
published. These studies have been based upon the composite choline signal, assessed
either qualitatively or quantitatively.

However, with the conventional Fourier-based analysis, in vivo MRS has had limi-
tations related to resolution, SNR as well as being based upon estimates of a single
composite compound (total choline). Particularly troublesome is the limited possibi-
lity of MRS to characterize smaller tumors, e.g. breast cancers <2 cm, that are difficult
to distinguish from benign lesions [44,48–51]. As pointed out by surgical oncologist
Gluch [52]: “difficulties arise not so much in regards to the large lesion with suspicious
imaging characteristics, but rather the lesion <1 cm in size, or ductal carcinoma in-situ.
In-vivo studies have not satisfactorily addressed these entities. A chance of missing
a breast cancer of the order of only 1% would translate into a significant medicole-
gal concern.” Most importantly, it should be pointed out that a missed cancer, albeit
relatively less likely with MRI plus MRS than mammography, can adversely affect
prognosis [24].

The reliance upon the composite choline peak for breast cancer detection through
MRS may compromise diagnostic accuracy, since choline may also be observed in
benign breast lesions. Heretofore, for example, using in vivo MRS a total of 46 fibroa-
denomas have been evaluated [47] with three false positive findings. Choline also
appears in normal breast during lactation, although in the latter, a lactose resonance
at 3.8 is typically also seen [51]. It should, however, also be pointed out that breast
cancer can coexist with lactation as well as with pregnancy, and these malignancies
are often detected late. Furthermore, choline is often undetected in small tumors that
are then misclassified as benign [41].

Using Fourier-based analysis, in vivo proton MRS for breast cancer diagnostics
has generally required lipid suppression, since the MR spectra from the breast are
usually dominated by lipid resonances. This lipid hampers localized shimming and
also produces sideband artefacts [50]. Lipid suppression has most often been achie-
ved by increasing the echo time. However, this leads to diminished signal intensity.
Very recently, Hu et al. [49] presented some initial data about the possibility of lipid
suppression at short echo times via an echo-filter suppression. On the other hand, Stan-
well and Mountford [50] point out that suppression of the lipid resonance eliminates
the possibility of evaluating lipid which is part of the actual disease process. Overall,
use of various echo times impedes consistent interpretation of data from in vivo MRS
of the breast [50], and this may have clinically important implications. For example,
metabolites with short T2 relaxation times will have decayed at longer TE; of these
is myoinositol whose estimated concentrations provided some useful distinction bet-
ween breast cancer and fibroadenoma in our analysis [40,53,54] of in vitro MRS data
[55].
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The high resolution of in vitro nuclear magnetic resonance (NMR) applied to extrac-
ted specimens can provide a greater insight into the metabolic activity of cancerous
breast tissue. We have performed extensive multivariate analyses [40,53,54] of such
NMR data from extracted breast specimens [55] revealing rich spectroscopic infor-
mation for detecting breast cancer in closely overlapping resonances. Several metabo-
lites (notably lactate) improved diagnostic accuracy, while total choline had somewhat
lower diagnostic accuracy compared to several other metabolites, including its clo-
sely overlapping components. These findings justify further exploration of how MRS
could tap into this rich store of metabolic information. In order to do so, improved data
processing methods are needed to quantify MR-visible compounds in breast lesions,
as has been recently emphasized [40,53,54,56,57].

1.3 Aim of the present study

In the present study we examine the performance of the FPT applied to time signals
that were generated according to in vitro MRS data as encoded from extracted breast
specimens [55]. This is viewed as the first step in the process of determining whether the
described features of the FPT could be of potential benefit for breast cancer diagnostics
via MRS.

2 Results

2.1 Input data

Three FIDs of the following type were generated:

cn =
K∑

k=1

dkeinωkτ , Im(ωk) > 0. (8)

via a sum of K = 9 damped complex exponentials exp(inτωk)(1 ≤ k ≤ 9) with time-
independent (stationary) complex amplitudes dk . Here, ωk and dk are the fundamental
angular frequencies and amplitudes, (ωk = 2π fk , with fk being the linear frequency)
and Re(z) and Im(z), respectively, denote the real and imaginary parts of a complex
number z. The time signals were subsequently quantified using the FPT, as described
in [12]. The FIDs from Ref. [55] were recorded at a Larmor frequency of 600 MHz
(static magnetic field strength B0 ≈ 14.1T). We used a bandwidth of 6 kHz (the inverse
of this bandwidth is the sampling time τ) and set the total signal length N = 2048.

For the normal (non-infiltrated) breast, the input data for the spectral parameters
were according to the median concentrations Ck (expressed in µM/g/ww) (where ww
denotes wet weight) from the data of Gribbestad et al. [55] from 12 patients. The
input data for a benign breast lesion was according to the concentrations of the nine
metabolites from a single fibroadenoma as reported in Ref. [55]. For breast cancer,
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the input data for the spectral parameters were from median concentrations from the
data of Ref. [55] for 14 samples1 taken from 12 patients.

The resonances are grouped into two bands: 1.3–1.5 ppm and 3.2–3.3 ppm. Within
the latter band, there are seven metabolites, including two that are nearly degenerate
around 3.22 ppm. These are phosphocholine (PC) peak #4 and phosphoethanolamine
(PE) peak #5 separated by only 2.03 × 10−4 ppm.

We computed the input peak amplitudes dk from the reported concentrations where
|dk | = (Cmet/Cref)×2, where Cref = 0.05 mM/g/ww. TSP (3-(trimethylsilyl-) 3,3,2,2-
tetradeutero-propionic acid) was used as the internal reference by Gribbestad et al.
[55], such that |dk | = Cmet/[25µM/g/ww]. The T2 relaxation times were not reported
in Ref. [55]. We took the line widths (full-widths at half-maximum (FWHM)) to be
approximately 1 Hz, allowing very small variations, and assuming Lorentzian peaks.
The line widths are proportional to Im ( fk). Note that the mentioned smallest chemical
shift difference of ≈ 2 × 10−4 ppm is 4 times less than the typical line width of
8 × 10−4 ppm. The phases ϕk(1 ≤ k ≤ 9) from complex-valued dk were all set to
zero, so that every dk becomes real, dk = |dk |.

The input data for the normal breast tissue (upper panel (i)), fibroadenoma (middle
panel (ii)) and for the malignant breast (bottom panel (iii)) are presented in Table 1.

2.2 Reconstructed data

We used the diagonal FPT(−) to analyze the FIDs. The coefficients {pr , qs} of the
polynomials PK and QK were computed by solving the systems of linear equations,
treating the product in G N (z−1)∗QK (z−1) = PK (z−1) as a convolution. To extract the
peak parameters, we solved the characteristic equation QK (z−1)= 0. This leads to K
unique roots z−1

k (1 ≤ k ≤ K ), so that the soughtωk is deduced viaωk = (i/τ) ln(z−1
k ).

The FPT extracts the parameters {ωk, dk} (1 ≤ k ≤ K ) of every physical resonance
directly from the raw encoded FID. The kth metabolite concentration is computed
from the reconstructed amplitudes dk as Cmet = dk × (25 µM/g/ww).

To establish the constancy of the spectral parameters for all three signals, we sys-
tematically increased the signal length for the same bandwidth (i.e. augmenting the
acquisition times). Examining the spectral parameters at total orders K = 500, 750
and 1,000, where 2K = NP and NP denotes partial signal length, we found that
convergence occurred at K = 750 for all three FIDs under study, and remained stable
thereafter. We determined whether a given reconstructed resonance was true or spu-
rious by computing a sequence of the Padé shape spectra {Pm/Qm} (m = 1, 2, 3, . . .)

in the frequency range of interest from 1.3–3.3 ppm, as described in Sect. 1.1, Eqs. 4
through 7 and in Ref. [13]. For all three examined FIDs, of the 750 total resonances, 741
were identified as spurious by their zero amplitudes and the pole-zero coincidences,
yielding the nine genuine resonances.

1 Two samples each were taken from two of patients. In Ref. [54] metabolite concentrations were calculated
in only six and nine malignant samples, respectively, for the metabolites β-glucose and myoinositol.
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Table 1 Input spectral parameters and metabolite concentrations for normal breast tissue (top panel (i)),
fibroadenoma (middle panel (ii)) and malignant breast (bottom panel (iii)) derived from in vitro data of Ref.
[55]. Hereafter, ppm denotes parts per million, au arbitrary units, ww wet weight, Mk denotes metabolite
assignment, Ck denotes concentration of Mk , while Lac denotes lactate, Ala alanine, Cho choline, PC
phosphocholine, PE phosphoethanolamine, GPC glycerophosphocholine, β-Glc beta-glucose, Tau taurine,
m-Ino myoinositol

(i) NORMAL

  1   1.330413   0.000834   0.02016   0.5040 Lac

  2   1.470313   0.000832   0.00350   0.0875 Ala

  3   3.210124   0.000831   0.00068   0.0170 Cho

  4   3.220012   0.000833   0.00076   0.0190 PC

  5   3.220215   0.000834   0.00516   0.1290 PE

  6   3.230412   0.000832   0.00128   0.0320 GPC

  7   3.250224   0.000833   0.01800   0.4500 β−Glc

  8   3.270141   0.000831   0.00530   0.1325 Tau

  9   3.280132   0.000832   0.01144   0.2860 m−Ino

N
k
 (Metabolite # k) Re(f

k
 ) (ppm) Im(f

k
 ) (ppm) |d

k
 | (au) C

k
( µM/g/ww) M

k
 (Assignment)

(ii) FIBROADENOMA

  1   1.330413   0.000832   0.05928   1.4820 Lac

  2   1.470313   0.000834   0.00440   0.1100 Ala

  3   3.210124   0.000833   0.00088   0.0220 Cho

  4   3.220012   0.000832   0.00432   0.1080 PC

  5   3.220215   0.000831   0.01476   0.3690 PE

  6   3.230412   0.000833   0.00276   0.0690 GPC

  7   3.250224   0.000832   0.03912   0.9780 β−Glc

  8   3.270141   0.000834   0.01352   0.3380 Tau

  9   3.280132   0.000831   0.01860   0.4650 m−Ino

N
k
 (Metabolite # k) Re(f

k
 ) (ppm) Im(f

k
 ) (ppm) |d

k
 | (au) C

k
( µM/g/ww) M

k
 (Assignment)

(iii) MALIGNANT

  1   1.330413   0.000831   0.32474   8.1185 Lac

  2   1.470313   0.000832   0.03156   0.7890 Ala

  3   3.210124   0.000834   0.00446   0.1115 Cho

  4   3.220012   0.000831   0.02448   0.6120 PC

  5   3.220215   0.000832   0.07776   1.9440 PE

  6   3.230412   0.000833   0.00936   0.2340 GPC

  7   3.250224   0.000832   0.02882   0.7205 β−Glc

  8   3.270141   0.000831   0.11182   2.7955 Tau

  9   3.280132   0.000833   0.03564   0.8910 m−Ino

N
k
 (Metabolite # k) Re(f

k
 ) (ppm) Im(f

k
 ) (ppm) |d

k
 | (au) C

k
( µM/g/ww) M

k
 (Assignment)

INPUT DATA: SPECTRAL PARAMETERS, CONCENTRATIONS and METABOLITE ASSIGNMENTS

Types of Tissue on Three Panels : (i) Normal, (ii) Fibroadenoma, (iii) Malignant
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2.2.1 Reconstruction of the data from normal breast

The reconstructed data by the FPT(−) for the normal breast tissue are presented in
Table 2. These data are shown for partial signal lengths: NP = 1000, NP = 1500 and
NP = 2000.

At the shortest signal length, NP = 1000 (upper panel (i)), only eight of the nine
resonances were identified. In the interval where there should be two peaks, PC
(#4) at 3.220012 ppm and PE (#5) at 3.220215, only one resonance was identified at
3.220189 ppm. Since this single peak was closer to PE, it was given that assignment. At
that signal length, the reconstructed amplitudes and, consequently, the concentrations
for that single resonance were approximately the sum of (PC + PE). At NP = 1000
all the reconstructed spectral parameters were completely exact for lactate (Lac, peak
#1) at 1.330413 ppm, alanine (Ala, peak #2) at 1.470313 ppm, β-glucose (β-Glc, peak
#7) at 3.250224 ppm, taurine (Tau, peak #8) at 3.270141 and myoinositol (m-Ino,
peak #9) at 3.280132 ppm. While the reconstructed amplitude |dk | and metabolite
concentration were completely correct for choline (Cho, peak #3), the chemical shift
frequency, Re( fk) and the line width, Im( fk) for choline were correct for five of the six
decimal places (3.210123 ppm rather than 3.210124 ppm, 0.000830 ppm rather than
0.000831 ppm, respectively). At NP = 1000 for glycerophosphocholine (GPC, peak
#6) the line width, Im( fk) was correct for five of the six digits (0.000831 ppm rather
than 0.000832 ppm), while the reconstructed Re( fk), |dk | and concentration were all
fully exact to the 4th decimal place. At NP = 1500 full convergence was attained for
all the reconstructed parameters for all nine resonances (middle panel (ii) of Table 2).
The stability of convergence at higher signal length NP = 2000 is demonstrated on the
bottom panel (iii) of Table 2, in which it is seen that all the reconstructed parameters
remain exact. This remains true at still higher NP including the full signal length N .

Figure 1 shows the absorption component shape spectra and the total shape spectra
reconstructed by the FPT(−) at the three partial signal lengths: NP = 1000, NP = 1500
and NP = 2000 for the normal breast data. At NP = 1000, as seen on the right upper
panel (iv), the absorption total shape spectrum is converged. This was not the case,
however, for the component shape spectrum (left upper panel (i)), which shows only
one peak (#5, PE) at 3.22 which is overestimated, while peak #4 (PC) is unresolved.
At NP = 1500 in the left middle panel (ii) of Fig. 1 the component shape spectrum is
converged such that peaks ## 4 and 5 are resolved and have the correct heights, as do
all the other peaks. The small PC peak is seen to completely underlie PE. This is to be
expected since, as noted, the difference between these peaks ## 4 and 5 is about four
times less than the line widths. Stability of convergence is confirmed at NP = 2000 in
the lower panels for both the absorption component shape spectrum (iii) and the total
shape spectrum (vi), and at still higher NP including the full signal length N .

The convergence of metabolite concentrations for the normal breast cancer data is
graphically illustrated in Fig. 2 for the same three partial signal lengths: NP = 1000,
NP = 1500 and NP = 2000. The input data are represented by the symbol “x”,
whereas the Padé-reconstructed data are shown as open circles. Prior to convergence,
at NP = 1000 neither the concentrations of PC nor PE are correctly assessed in the
reconstruction (top panel (i)), but all the rest of the metabolite concentrations are exact
to the 4th decimal place. At NP = 1500 (middle panel (ii)) and NP = 2000 (bottom
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Table 2 Padé-reconstructed spectral parameters and metabolite concentrations for normal breast tissue
with the input data as derived from Ref.[55]

(i) Pade−Reconstructed Data (Normal): N
P
 = 1000 (# 4 PC: Unresolved, # 5 PE: Overestimated)

  1   1.330413   0.000834   0.02016   0.5040 Lac

  2   1.470313   0.000832   0.00350   0.0875 Ala

  3   3.210123   0.000830   0.00068   0.0170 Cho

  5   3.220189   0.000836   0.00592   0.1480 PE

  6   3.230412   0.000831   0.00128   0.0320 GPC

  7   3.250224   0.000833   0.01800   0.4500 β−Glc

  8   3.270141   0.000831   0.00530   0.1325 Tau

  9   3.280132   0.000832   0.01144   0.2860 m−Ino

N
k
 (Metabolite # k) Re(f

k
 ) (ppm) Im(f

k
 ) (ppm) |d

k
 | (au) C

k
( µM/g/ww) M

k
 (Assignment)

(ii) Pade−Reconstructed Data (Normal): N
P
 = 1500 (Converged)

  1   1.330413   0.000834   0.02016   0.5040 Lac

  2   1.470313   0.000832   0.00350   0.0875 Ala

  3   3.210124   0.000831   0.00068   0.0170 Cho

  4   3.220012   0.000833   0.00076   0.0190 PC

  5   3.220215   0.000834   0.00516   0.1290 PE

  6   3.230412   0.000832   0.00128   0.0320 GPC

  7   3.250224   0.000833   0.01800   0.4500 β−Glc

  8   3.270141   0.000831   0.00530   0.1325 Tau

  9   3.280132   0.000832   0.01144   0.2860 m−Ino

N
k
 (Metabolite # k) Re(f

k
 ) (ppm) Im(f

k
 ) (ppm) |d

k
 | (au) C

k
( µM/g/ww) M

k
 (Assignment)

(iii) Pade−Reconstructed Data (Normal): N
P
 = 2000 (Converged)

  1   1.330413   0.000834   0.02016   0.5040 Lac

  2   1.470313   0.000832   0.00350   0.0875 Ala

  3   3.210124   0.000831   0.00068   0.0170 Cho

  4   3.220012   0.000833   0.00076   0.0190 PC

  5   3.220215   0.000834   0.00516   0.1290 PE

  6   3.230412   0.000832   0.00128   0.0320 GPC

  7   3.250224   0.000833   0.01800   0.4500 β−Glc

  8   3.270141   0.000831   0.00530   0.1325 Tau

  9   3.280132   0.000832   0.01144   0.2860 m−Ino

N
k
 (Metabolite # k) Re(f

k
 ) (ppm) Im(f

k
 ) (ppm) |d

k
 | (au) C

k
( µM/g/ww) M

k
 (Assignment)

CONVERGENCE of SPECTRAL PARAMETERS and CONCENTRATIONS in FPT  (−) : PARTIAL SIGNAL LENGTHS N
 P

 =1000, 1500, 2000

panel (iii)), all of the metabolite concentrations are correct, as seen both numerically and
by the graphic representations. This means that the “x’s” are completely centered within
the open circles, indicating full agreement between the input and reconstructed data.

2.2.2 Reconstruction of the data from fibroadenoma

The reconstructed data by the FPT(−) for the fibroadenoma are presented in Table 3, for
NP = 1000, NP = 1500 and NP = 2000. At NP = 1000 (upper panel (i) of Table 3),
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PADE COMPONENT SHAPE SPECTRA (Left), TOTAL SHAPE SPECTRA (Right) : PARTIAL SIGNAL LENGTHS N
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Fig. 1 Convergence patterns for the Padé-reconstructed the absorption component spectra (left panels)
and total shape spectra (right panels) for normal breast within the frequency range of 3.2 to 3.3 ppm, from
in vitro data of Ref. [55]. In the top right panel (iv), the total shape spectrum is converged at NP = 1000,
but the component spectrum at NP = 1000 (top left panel (i)) failed to resolve phosphocholine (PC) (peak
#4) and overestimated phosphoethanolamine (PE) (peak #5). At NP = 1500 (middle left panel (ii)) the
two resonances (## 4 & 5) at 3.22 ppm are resolved; the small PC peak is seen to completely underlie
PE. Convergence of the absorption component spectra (iii) and total shape spectra (vi) remains stable at
NP = 2000 (bottom panels) and beyond including the full signal length N . The ordinates are in au

again only eight of the nine resonances were identified. In the interval where there
should be two peaks, PC (peak #4) at 3.220012 ppm and PE (peak #5) at 3.220215 ppm,
only one resonance was identified at 3.220169. Again, since this single peak was closer
to PE, it was given that assignment. At NP = 1000, the reconstructed amplitude and
the concentration for that single resonance were approximately the sum of (PC + PE).
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Fig. 2 Convergence of the Padé-reconstructed metabolite concentrations in normal breast from in vitro data
of Ref. [55]. At NP = 1000 (top panel (i)) convergence has not been achieved. PC (peak #4) is not detected
and PE (peak #5) is overestimated. All of the other metabolite concentrations are fully correct at the 4th

decimal place. At NP = 1500 (middle panel (ii)) all the resonances are identified and the reconstructed
metabolite concentrations are correct. This convergence is stable at longer signal lengths, as shown in
bottom panel (iii) at NP = 2000 and beyond, including the full signal length N
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At NP = 1000 all the reconstructed spectral parameters were completely exact for
Lac (peak #1), Ala (peak #2), β-Glc (peak #7), Tau (peak #8) and m-Ino (peak #9) .
However, for Cho (peak #3) the chemical shift frequency, Re( fk) and the line width,
Im( fk) were correct for five of the six digits (3.210122 ppm rather than 3.210124 ppm,
0.000830 ppm rather than 0.000833 ppm, respectively). The reconstructed amplitude
|dk | for Cho was fully correct, but the metabolite concentration was calculated to be
0.0219 µM/g/ww, rather than the correct value of 0.0220 µM/g/ww. For GPC (peak
#6) the chemical shift frequency, Re( fk) and the line width, Im( fk) were correct for
five of the six digits (3.230413 ppm rather than 3.230412 ppm, 0.000831 ppm rather
than 0.000833 ppm, respectively). The reconstructed amplitude |dk | for GPC was fully
correct, but the metabolite concentration was calculated to be 0.0689 µM/g/ww, rather
than the correct value of 0.0690 µM/g/ww.

At NP = 1500 full convergence was attained for all the reconstructed parameters
for all nine resonances (middle panel (ii) of Table 3). The stability of convergence
at higher signal length NP = 2000 is demonstrated on the bottom panel (iii) of
Table 3, in which it is seen that all the reconstructed parameters remain exact. This
stable convergence was also confirmed at even longer signal lengths, including the full
signal length N .

Figure 3 displays the absorption component shape spectra and the total shape spec-
tra reconstructed by the FPT(−) at NP = 1000, NP = 1500 and NP = 2000 for the
fibroadenoma. At NP = 1000, as seen on the right upper panel (iv), the absorption
total shape spectrum is converged. Again, this was not the case for the component
shape spectrum (left upper panel (i)), which shows only one peak (#5, PE) at 3.22
which is overestimated, while peak #4 (PC) is unresolved. At NP = 1500 in the left
middle panel (ii) of Fig. 3 the component shape spectrum is converged such that peaks
## 4 and 5 are resolved and have the correct heights, as do all the other peaks. The
small PC peak is seen to be completely beneath PE. Stability of convergence is confir-
med here as well at NP = 2000 in the lower panels for both the absorption component
shape spectrum (iii) and the total shape spectrum (vi) and this also holds true for longer
signals lengths, including the full signal length N .

The convergence of metabolite concentrations for the fibroadenoma data at
NP = 1000, NP = 1500 and NP = 2000 is shown in Fig. 4. At NP = 1000 neither
the concentrations of PC nor PE are correctly assessed in the reconstruction (top panel
(i)), and there is a slight discrepancy in the concentrations of peaks ## 3 and 6, Cho and
GPC, respectively. At NP = 1500 (middle panel (ii)) and NP = 2000 (bottom panel
(iii)), all of the metabolite concentrations are correct, as seen both numerically and by
the graphic representations. At even higher NP and and at the full signal length N the
metabolite concentrations were verified to be correct, as well.

2.2.3 Reconstruction of the data from malignant breast

The reconstructed data by the FPT(−) for the malignant breast are presented in Table 4
at NP = 1000, NP = 1500 and NP = 2000. At NP = 1000 (upper panel (i) of
Table 4), once again only eight of the nine resonances were identified. In the interval
where there should be two peaks, PC at 3.220012 ppm and PE at 3.220215, there was
only one resonance identified at 3.220166 ppm, and the reconstructed amplitudes and
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Table 3 Padé-reconstructed spectral parameters and metabolite concentrations for fibroadenoma with the
input data as derived from Ref. [55]

(i) Pade−Reconstructed Data (Fibroadenoma): N
P
 = 1000 (# 4 PC: Unresolved, # 5 PE: Overestimated)

  1   1.330413   0.000832   0.05928   1.4820 Lac

  2   1.470313   0.000834   0.00440   0.1100 Ala

  3   3.210122   0.000830   0.00088   0.0219 Cho

  5   3.220169   0.000835   0.01909   0.4773 PE

  6   3.230413   0.000831   0.00276   0.0689 GPC

  7   3.250224   0.000832   0.03912   0.9780 β−Glc

  8   3.270141   0.000834   0.01352   0.3380 Tau

  9   3.280132   0.000831   0.01860   0.4650 m−Ino

N
k
 (Metabolite # k) Re(f

k
 ) (ppm) Im(f

k
 ) (ppm) |d

k
 | (au) C

k
( µM/g/ww) M

k
 (Assignment)

(ii) Pade−Reconstructed Data (Fibroadenoma): N
P
 = 1500 (Converged)

  1   1.330413   0.000832   0.05928   1.4820 Lac

  2   1.470313   0.000834   0.00440   0.1100 Ala

  3   3.210124   0.000833   0.00088   0.0220 Cho

  4   3.220012   0.000832   0.00432   0.1080 PC

  5   3.220215   0.000831   0.01476   0.3690 PE

  6   3.230412   0.000833   0.00276   0.0690 GPC

  7   3.250224   0.000832   0.03912   0.9780 β−Glc

  8   3.270141   0.000834   0.01352   0.3380 Tau

  9   3.280132   0.000831   0.01860   0.4650 m−Ino

N
k
 (Metabolite # k) Re(f

k
 ) (ppm) Im(f

k
 ) (ppm) |d

k
 | (au) C

k
( µM/g/ww) M

k
 (Assignment)

(iii) Pade−Reconstructed Data (Fibroadenoma): N
P
 = 2000 (Converged)

  1   1.330413   0.000832   0.05928   1.4820 Lac

  2   1.470313   0.000834   0.00440   0.1100 Ala

  3   3.210124   0.000833   0.00088   0.0220 Cho

  4   3.220012   0.000832   0.00432   0.1080 PC

  5   3.220215   0.000831   0.01476   0.3690 PE

  6   3.230412   0.000833   0.00276   0.0690 GPC

  7   3.250224   0.000832   0.03912   0.9780 β−Glc

  8   3.270141   0.000834   0.01352   0.3380 Tau

  9   3.280132   0.000831   0.01860   0.4650 m−Ino

N
k
 (Metabolite # k) Re(f

k
 ) (ppm) Im(f

k
 ) (ppm) |d

k
 | (au) C

k
( µM/g/ww) M

k
 (Assignment)

CONVERGENCE of SPECTRAL PARAMETERS and CONCENTRATIONS in FPT  (−) : PARTIAL SIGNAL LENGTHS N
 P

 =1000, 1500, 2000

the concentrations for that single resonance were approximately the sum of (PC + PE).
Again, since this single peak was closer to PE, it was given that assignment. At
NP = 1000 all the reconstructed spectral parameters were completely exact for Lac
(peak #1), Ala (peak #2) and m-Ino (peak #9). For peak #3 (Cho) the reconstructed
Re( fk) and Im( fk) were exact to five of six decimal places (3.210122 ppm instead
of the correct value of 3.210124 and 0.000830 ppm instead of the correct value of
0.000834 ppm, respectively). The reconstructed |dk | for choline was 0.00444 au whe-
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Fig. 3 Convergence patterns for the Padé-reconstructed the absorption component spectra (left panels) and
total shape spectra (right panels) for fibroadenoma within the frequency range of 3.2 to 3.3 ppm, from in vitro
data of Ref. [55]. In the top right panel (iv), the total shape spectrum is converged at NP = 1000, but the
component spectrum at NP = 1000 (top left panel (i)) failed to resolve PC (peak #4) and overestimated PE
(peak #5). At NP = 1500 (middle left panel (ii)) the two resonances (## 4 & 5) at 3.22 ppm are resolved;
PC is seen to completely underlie PE. At NP = 2000 (bottom panels) convergence of the absorption
component spectra (iii) and total shape spectra (vi) remains stable and this holds for longer signal lengths,
as well, including the full signal length N . The ordinates are in au

reas the correct value is 0.00446 au. The concentration for choline was calculated to
be 0.1111 µM/g/ww at NP = 1000, while it should be 0.1115 µM/g/ww. For peak
# 6 (GPC) at NP = 1000 the reconstructed Re( fk) was correct to five of six deci-
mal places; the Im( fk) to four of six decimal places, the |dk | was 0.00933 au rather
than 0.00936, and the concentration was 0.2332 µM/g/ww while the correct value is
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Fig. 4 Convergence of the Padé-reconstructed metabolite concentrations in fibroadenoma from in vitro
data of Ref. [55]. At NP = 1000 (top panel (i)) convergence has not been achieved. Peak #4 (PC) is not
detected and peak #5 (PE) is overestimated. Peaks ## 3 (Cho) and 6 (GPC) were correct only to 2 decimal
places. All of the other metabolite concentrations are fully correct at the 4th decimal place. At NP = 1500
(middle panel (ii)) all the resonances are identified and the reconstructed metabolite concentrations are
correct. This convergence is stable as shown in bottom panel (iii) at NP = 2000, and this holds for longer
signal lengths, including the full signal length N
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Table 4 Padé-reconstructed spectral parameters and metabolite concentrations for breast cancer from the
input data as derived from Ref. [55]

(i) Pade−Reconstructed Data (Malignant): N
P
 = 1000 (# 4 PC: Unresolved, # 5 PE: Overestimated)

  1   1.330413   0.000831   0.32474   8.1185 Lac

  2   1.470313   0.000832   0.03156   0.7890 Ala

  3   3.210122   0.000830   0.00444   0.1111 Cho

  5   3.220166   0.000836   0.10230   2.5575 PE

  6   3.230414   0.000829   0.00933   0.2332 GPC

  7   3.250224   0.000832   0.02882   0.7204 β−Glc

  8   3.270141   0.000831   0.11182   2.7954 Tau

  9   3.280132   0.000833   0.03564   0.8910 m−Ino

N
k
 (Metabolite # k) Re(f

k
 ) (ppm) Im(f

k
 ) (ppm) |d

k
 | (au) C

k
( µM/g/ww) M

k
 (Assignment)

(ii) Pade−Reconstructed Data (Malignant): N
P
 = 1500 (Converged)

  1   1.330413   0.000831   0.32474   8.1185 Lac

  2   1.470313   0.000832   0.03156   0.7890 Ala

  3   3.210124   0.000834   0.00446   0.1115 Cho

  4   3.220012   0.000831   0.02448   0.6120 PC

  5   3.220215   0.000832   0.07776   1.9440 PE

  6   3.230412   0.000833   0.00936   0.2340 GPC

  7   3.250224   0.000832   0.02882   0.7205 β−Glc

  8   3.270141   0.000831   0.11182   2.7955 Tau

  9   3.280132   0.000833   0.03564   0.8910 m−Ino

N
k
 (Metabolite # k) Re(f

k
 ) (ppm) Im(f

k
 ) (ppm) |d

k
 | (au) C

k
( µM/g/ww) M

k
 (Assignment)

(iii) Pade−Reconstructed Data (Malignant): N
P
 = 2000 (Converged)

  1   1.330413   0.000831   0.32474   8.1185 Lac

  2   1.470313   0.000832   0.03156   0.7890 Ala

  3   3.210124   0.000834   0.00446   0.1115 Cho

  4   3.220012   0.000831   0.02448   0.6120 PC

  5   3.220215   0.000832   0.07776   1.9440 PE

  6   3.230412   0.000833   0.00936   0.2340 GPC

  7   3.250224   0.000832   0.02882   0.7205 β−Glc

  8   3.270141   0.000831   0.11182   2.7955 Tau

  9   3.280132   0.000833   0.03564   0.8910 m−Ino

N
k
 (Metabolite # k) Re(f

k
 ) (ppm) Im(f

k
 ) (ppm) |d

k
 | (au) C

k
( µM/g/ww) M

k
 (Assignment)

CONVERGENCE of SPECTRAL PARAMETERS and CONCENTRATIONS in FPT  (−) : PARTIAL SIGNAL LENGTHS N
 P

 =1000, 1500, 2000

0.2340 µM/g/ww. For peak #7 (β-Glc) and peak #8 (Tau), the reconstructed Re( fk),
Im( fk) and |dk | were correct to all decimal places, but the calculated concentrations
were exact to three of the four decimal places.

At NP = 1500 full convergence was attained for all the reconstructed parame-
ters for all nine resonances, middle panel (ii) of Table 4. Once again, the stability of
convergence at higher signal lengths NP = 2000 is demonstrated, where on the bot-
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tom panel (iii) of Table 4, it is seen that all the reconstructed parameters remain exact.
This remains true for even higher signal lengths, including the full signal length N .

The Padé-reconstructed absorption component shape spectra and the total shape
spectra are shown in Fig. 5 at NP = 1000, NP = 1500 and NP = 2000 for the
malignant breast data. At NP = 1000, (right upper panel (iv)), the absorption total
shape spectrum is converged. Once again, this was not the case for the component
shape spectrum (left upper panel (i)), which shows only one peak (#5, PE) at 3.22
which is overestimated, while peak #4 (PC) is unresolved. At NP = 1500 in the
left middle panel (ii) of Fig. 5 the component shape spectrum is converged such that
peaks ## 4 and 5 are resolved and have the correct heights, as do all the other peaks.
Phosphocholine is seen to lie completely underneath PE. Stability of convergence is
confirmed at NP = 2000 in the lower panels for both the absorption component shape
spectrum (iii) and the total shape spectrum (vi), and this was the case for longer signal
lengths, as well, including the full signal length N .

The convergence of metabolite concentrations for the breast cancer data is shown
on Fig. 6 for NP = 1000, NP = 1500 and NP = 2000. Prior to convergence, at
NP = 1000 neither the concentrations of peaks ## 4 (PC) nor 5 (PE) are correctly
assessed in the reconstruction (top panel (i)) and there is a slight discrepancy in the
concentrations of peak # 3 (Cho), peak # 6 (GPC), peak # 7 (β-Glc) and peak # 8
(Tau). At NP = 1500 (middle panel (ii)) and NP = 2000 (bottom panel (iii)), all of
the metabolite concentrations are observed to be correct, both numerically and by the
graphic representations. We verified that the metabolite concentrations were correct
even for higher NP and at the full signal length N .

2.2.4 Comparison of the converged spectra and concentration maps for normal
breast, fibroadenoma and breast cancer

In Fig. 7 the converged Padé-reconstructed absorption component shape spectra and
total shape spectra within the range of 3.2 to 3.3 ppm are shown for the normal breast
data (top panels (i) and (iv)), fibroadenoma (middle panels (ii) and (v)) and malignant
breast data (bottom panels (iii) and (vi)). For the normal data, the amplitudes of all
the metabolites within this frequency range are low, with β-Glc at 3.25 ppm (peak #7)
being the largest, followed by m-Ino (peak #9) at 3.28 ppm. The PC peak underlying
PE is very small.

Compared to the spectra for the normal breast, for the fibroadenoma the amplitudes
of all the peaks are larger within the range of 3.2 and 3.3 ppm. As is the case for
the normal data, β-Glc at 3.25 ppm (peak #7) predominates in the spectrum of the
fibroadenoma within this frequency range. The difference between the total absorption
shape spectrum and the component spectrum becomes apparent for the fibroadenoma,
since the peak (4 + 5) at 3.22 ppm is approximately the same height as m-Ino (peak
#9 at 3.28 ppm) for the total shape spectrum, while m-Ino is clearly larger than the
resolved peaks ## 4 (PC) and 5 (PE) at 3.22 ppm in the converged component shape
spectrum.

The spectra for the breast cancer data show a clearly different pattern within the
range of 3.2 and 3.3 ppm. Peak #8 (Tau) at 3.27 ppm is predominant for the malignant
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Fig. 5 Convergence patterns for the Padé-reconstructed the absorption component spectra (left panels) and
total shape spectra (right panels) for breast cancer within the frequency range of 3.2 to 3.3 ppm, from in vitro
data of Ref. [55]. In the top right panel (iv), the total shape spectrum is converged at NP = 1000, but the
component spectrum at NP = 1000 (top left panel (i)) failed to resolve PC (peak #4) and overestimated PE
(peak #5). At NP = 1500 (middle left panel (ii)) the two resonances (##4 & 5) at 3.22 ppm are resolved; PC
is seen to completely underlie PE. At NP = 2000 (bottom panels) convergence of the absorption component
spectra (iii) and total shape spectra (vi) remains stable, and this holds for longer signal lengths, as well. The
ordinates are in au

case, with peak # 7 (β-Glc) at 3.25 ppm being among the smaller resonances. For the
malignant data the difference is the most marked between the total shape spectrum
in which the PC+PE peak at 3.22 is nearly as large as most abundant resonance, Tau,
and the component spectrum in which PE and PC are clearly delineated and each
obviously much smaller than Tau.
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Fig. 6 Convergence of the Padé-reconstructed metabolite concentrations in breast cancer from in vitro data
of Ref. [55]. At NP = 1000 (top panel (i)) convergence has not been achieved. PC is not detected, PE is
overestimated and several of the other metabolite concentrations are not fully correct at the 4th decimal
place. At NP = 1500 (middle panel (ii)) all the resonances are identified and the reconstructed metabolite
concentrations are correct. This convergence is stable at NP = 2000 as shown in bottom panel (iii), as well
as at longer signal lengths, including the full signal length N
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Fig. 7 Converged Padé-reconstructed absorption component spectra (left panels) and total shape spectra
(right panels) at NP = 1500 for normal breast tissue breast tissue (top panels (i and iv)), fibroadenoma
(middle panels (ii and v) and malignant breast (bottom panels (iii) and (vi)) derived from in vitro data of
Ref. [55]

The converged metabolite maps reconstructed by the FPT(−) for the normal breast
tissue (top panel (i)), fibroadenoma (middle panel (ii)) and for the malignant breast
(bottom panel (iii)) are presented in Fig. 8. For the normal breast tissue it can be
seen that peak # 1 (Lac), has the largest concentration (0.5040 µM/g/ww), slightly
higher than β-Glc, peak #7 (0.4500 µM/g/ww). The median lactate concentration in
the normal breast is about 0.34 of that in the fibroadenoma. For the malignant breast,
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the lactate concentration is over five times higher than in the fibroadenoma, and is by
far the largest resonance, being almost three time higher than Tau (peak #8).

3 Discussion

A key advantage of the FPT for MRS signals is the ability to resolve and precisely
quantify very closely overlapping resonances with certainty. In the present study this is
clearly demonstrated for the spectrally dense region between 3.21 and 3.23 ppm, which
encompasses the constituents of total choline: choline at 3.21 ppm, phosphocholine
at 3.22 ppm and glycerophosphocholine at 3.23 ppm. Remarkably, phosphocholine
and phosphoethanolamine are almost completely overlapping at 3.22 ppm, separated
by a mere 0.000203 ppm which is about four times less than the line widths. Yet
at convergence the FPT(−) exactly reconstructs the input parameters for these two
resonances with full fidelity. In our previous work [12,14,17] from MRS time signals
that closely match FIDs encoded via proton MRS from the brain of a healthy volunteer
[59], the FPT at convergence also exactly reconstructed all the resonances (25 in that
case) including two that were nearly degenerate.

The present study also corroborates our previous findings [12] that convergence of
the total shape spectrum does not necessarily imply that the component spectrum has
done likewise. Thus, the commonly employed practice of relying upon the residual
spectrum to indicate convergence [59], is indeed tenuous at best, and, in fact, entails
attempts to guess the number of resonances under a given peak, as customarily done
by various post-processing fitting algorithms used in the MRS literature [60–62]. This
is due to the reliance upon Fourier-based processing, which can only provide a total
shape spectrum. In sharp contradistinction, Padé-based reconstruction, because of its
fundamental grounding in quantum mechanics and through the powerful concept of
pole-zero cancellation (Froissart doublets), yields not only the possibility of the exact
extraction of all the spectral frequencies and amplitudes of all the metabolites, but also
certainty about their true number. The key clinical ramification of this latter feature is
the unique, and, hence, the most reliable quantification of all the physical metabolite
concentrations [15].

Identification and quantification of these constituents of total choline within the tight
spectral region of 3.21 to 3.23 ppm has clinical relevance for breast cancer diagnostics.
We have previously noted that the ratio of PC/GPC is significantly higher in the mali-
gnant versus the normal samples [54] of the present input data [55]. This corroborates
human breast cell line research, indicating that malignant transformation is associa-
ted with a so-called “glycerophosphocholine to phosphocholine switch” [63], related,
inter alia, to over-expression of the enzyme choline kinase responsible for PC synthe-
sis [64,65], and also reflecting altered membrane choline phospholipid metabolism.
The major steps in choline metabolism are through the cytosine diphosphate (CDP)-
choline pathway [65]. The 1H-NMR visible compounds within that pathway, cho-
line (3.21 ppm), PC (3.22 ppm) and GPC (3.23 ppm) underscore the clinico-biological
importance of analyzing the relationship among these closely overlapping resonances.
On the other hand, by summing these three metabolites as “total choline”, as is currently
done with in vivo MRS, substantial information for breast cancer diagnostics is missed.
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Precise quantification of the metabolites within this tight spectral region may be of
added value in distinguishing fibroadenoma from breast cancer. From the present input
data [55], the PC concentration was approximately 5.7 times lower in the fibroadenoma
than the median PC concentration for breast cancer. This was percentually a greater
difference than for PE or GPC. On the other hand, the PC and GPC concentrations, in
the fibroadenoma were respectively about 5.7 and 2.2 times higher than in the median
PC concentration for normal breast tissue. These findings illustrate the need for precise
quantification of the components of total choline in order to develop reliable databases
to improve the diagnostic accuracy with which benign and malignant breast pathology
are distinguished.

On the basis of these input data from a fairly small number of breast cancer samples
and only one fibroadenoma, obviously no definitive conclusions can be drawn about
which metabolites are optimal for detecting the presence of breast cancer and dis-
tinguishing this from normal mammary tissue or benign lesions. Nevertheless, it is
noteworthy that we found in our multiple logistic regression analysis [40,53,54] of
these data by Gribbestad et al. [55] that only lactate showed 100% diagnostic accuracy
both with and without inclusion of the fibroadenoma. Thus, we see that the lactate
concentration from the present input data based on Ref. [55] was lower in the fibroa-
denoma than in all the individual breast cancer samples.

Some corroboration about the diagnostic value of lactate and of phosphocholine is
provided by Sharma and colleagues [67] who used in vitro 2D MRS to compare 11
involved and 12 uninvolved lymph nodes from patients with breast cancer. Namely,
the concentrations of PC and GPC were significantly higher in involved compared to
non-involved nodes. This was attributed to increased membrane synthesis in cancer
cells, suggesting that metastatic breast cancer cells were present in the lymph nodes.
There was also a highly significant difference between the lactate concentrations in
involved and non-involved nodes [66]. The elevated lactate reflects the presence of
cancer cells whose energy source is from the anaerobic glycolytic pathway. Animal
models of breast cancer also support the importance of assessing the rate of glycolysis
and lactate clearance with respect to the diagnosis and prognosis of breast cancer
[67]. Thus far, however, clinical in vivo MRS analyses have not included lactate as a
metabolic marker of breast cancer.

The present study employs noise-free FIDs, since we wanted to set up the fully-
controlled standard for the FPT in the case of the initial application of this method to
data within the realm of breast cancer diagnostics by MRS. This is methodologically
justified [12]. We are now taking the next steps to extend our analysis to both noise-
corrupted synthesized data (still well-controlled) and to encoded FIDs similar to those
from Ref. [55] as well as in vivo MRS data from the breast, and these results will be
reported shortly.

4 Conclusions

The advantages of the FPT demonstrated in the present paper could be of definite bene-
fit for breast cancer diagnostics via MRS. This line of investigation should continue
with encoded data from benign and malignant breast tissue, in vitro and in vivo. We
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anticipate that Padé-optimized MRS will reduce the false positive rates of MR-based
modalities and further improve their sensitivity. Once this is achieved, and given that
MR entails no ionizing radiation, new possibilities for screening/early detection open
up, especially for risk groups, e.g. Padé-optimized MRS could be used with greater
surveillance frequency among younger women with high breast cancer risk.
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